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The large-amplitude force vibrations of steel thin-walled silos when empty are
investigated. The basic geometry con"guration modelled is a cylinder clamped at
the bottom with a top conical roof. Wind pressure distributions are assumed as
non-axisymmetric in the circumferential direction and with a rectangular impulse
or step distribution in time. Instability is identi"ed from "nite-element
computations of the time response of the shell using a criterion due to Budianski
and Roth. Results are computed for silos made with plain as well as with
corrugated sheets, and the in#uences of geometric imperfections and the sti!ening
due to the roof are included in the analysis. The problems are also modelled with
static pressures using both continuation techniques and bifurcation analysis from
a linear fundamental path. Additional results have been obtained to estimate the
dynamic buckling load for step loading using energy procedures. All results are
computed using "nite-element codes developed by the authors.

( 1999 Academic Press.
1. INTRODUCTION

This paper reports on research carried out to elucidate the in#uence of dynamic
e!ects on the geometric instability of thin-walled metal silos. Wind-load buckling of
metal cylindrical silos causes considerable problems in many parts of the world.
Failure of such silos is illustrated in the photograph of Figure 1, for a group of
empty silos that collapsed in the province of Cordoba (Argentina) in 1993, under
wind gusts of 150 km/h. Instability occurs when the silos are empty, and may
induce transient de#ections in the cylindrical part, in the conical roof, or in both.
Wind action is a transient e!ect which causes forced vibrations of the structure, but
the phenomenon of instability may be driven by dynamic e!ects or may be an
essentially quasi-static phenomenon.

The static buckling of cylindrical structures under wind loading has been studied
by several authors [1}4]. It is commonly assumed that wind pressure is applied at
a slow rate on the structure, so that static bifurcation buckling loads can be
computed. A second hypothesis typical of such studies is that the fundamental
equilibrium path (the path emerging from the unloaded state) is linear. However,
how accurate is a static model for a structural system that is not static?

The evaluation of instability under transient loads requires the computation of
the non-linear dynamic response of the structure. A review of forms of evaluation of
0022-460X/99/280431#24 $30.00/0 ( 1999 Academic Press



Figure 1. Failure of a group of silos in Colonia Italia, CoH rdoba (Argentina) in 1993.
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instability under suddenly applied loads may be found in the comprehensive work
of Simitses [5] and in reference [6]. The most widely accepted criterion of
instability under dynamic loads is due to Budianski and Roth [7] and is employed
in this paper.

An alternative to estimate buckling under suddenly applied loads is to compute
the energy of the system and to infer from it a bound to the dynamic load. Such
criterion has been investigated by a number of authors for systems having one or
two degrees of freedom, but failed to produce good estimates for multiple degree of
freedom systems in typical shell structures employed in tanks [8]. A second
objective of this research is to assess the merits of energy approaches to estimate
dynamic buckling pressures of such silo systems.

The di!erent formulations employed in the paper are discussed in Section 2,
including non-linear dynamic and non-linear static models. The formulations are
applied to a theme structure in Section 3, and to the same structure with
imperfections and without the roof in Sections 4}6. Sections 7}6 deal with silos
with corrugated walls. Conclusions of the studies are presented in Section 10.

2. FORMULATIONS OF THE PROBLEM

In a recent study, the authors considered the forced vibrations and instability of
large diameter steel tanks which failed in a Caribbean island [8], and showed that
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a step load model could be adequate to represent the time-dependent pressure due
to wind. For wind gusts suddenly applied on the structure, the phenomenon of
dynamic instability occurred before the end of the wind gusts estimated to have
a duration of 3 s. Thus, for shells that reach instability under transient forced
vibrations in a very short time, there is no di!erence between impulsive and step
models of pressure, at least for the identi"cation of the onset of dynamic instability.
Therefore, the present studies were carried out assuming a space variation of
pressure on the shell, and with a step function for the variation in time. Care has
been taken in each case to check that the onset of instability occurs within the "rst
few seconds of the transient response.

The wind pressure distribution has been assumed with a circumferential
variation in the form

p"K
7
+
i/0

c
i
cos (ih), (1)

where K is the scalar parameter employed to increase the pressure, and it is
assumed that the meridian of incidence of the wind occurs for h"0. Experimental
data for the Fourier coe$cients in equation (1) for silo structures are not known to
the authors; thus in the absence of more detailed experimental evidence, several sets
of coe$cients were employed from other shell structures. The data employed for the
present computations is given in appendix A; however, it was found that the actual
pressure distribution in the circumference (and in the height) do no signi"cantly
a!ect the loads at which instability occurs. The same conclusion was found for large
diameter tanks as reported in reference [8].

In this work the response has been computed using three computer codes
developed by the authors. The "rst is called ALREF [9] and uses ring elements in
a classical shell theory (transverse shear deformations are neglected). It can model
non-axisymmetric pressure distributions such as those required for wind loads.
This code can predict linear bifurcation loads, non-linear bifurcations loads and
asymptotic postcritical paths (non-axisymmetric buckling modes) [10, 11].

The second code is called ALPHA [12]. It is a general-purpose "nite-element
program. For the silo model, a four-node shell element based upon the theory
developed by Simo and coworkers [13}16] was employed. Standard bilinear
interpolation is used for the mid-surface and for the director vector
(pseudonormal), and an assumed strain formulation is considered for transverse
shear deformations. A total Lagrangian formulation has been adopted with
objective strain and stress measures (Green}Lagrange strains e and second
Piola}Kirchho! stresses p). Corrugated sheets have been modelled using
equivalent orthotropic properties [17]. The static module solves the virtual work
equation

P
V

deTpd<"P
S

duTp dS, (2)

where du are the virtual displacements and p is the load vector.
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In a "nite-element formulation, equation (2) becomes &&n'' algebraic non-linear
equations of the form

g(Q)!Kf"0, (3)

where the Q
i
are the degrees of freedom of the system, g are the internal nodal

equivalent forces and f are equivalent nodal forces due to the external pressure. The
code can follow an elasto-plastic non-linear equilibrium path using standard
continuation techniques. It can also predict linear bifurcation loads or can
determine the critical point using extended systems [18]. The secondary path can
be followed using path switching techniques. For dynamic analysis the inertia terms
are added to equation (3) leading to

g (Q, t )!MQG !K (t)f"0. (4)

The Newmark algorithm is used to integrate these equations in time, t, where
a lumped mass matrix, M was considered.

The third code is called DELTA [19] and uses the same theoretical basis of the
code ALPHA and the same "nite elements but it is intended exclusively for
transient analysis. The integration in time is performed explicitly in this case using
a central di!erence scheme. This code has been used only in those cases where the
implicit code had convergence problems, for example when corrugated silo walls
were considered.

The most general criterion of instability available is based on the comparison of
the response in time for di!erent load levels [7]. The procedure consists in "nding
the load parameter K

D
so that for small changes in the load K, there are large

changes in the response (displacements) of the system. This is a very general
procedure, and does not involve approximations other than the numerical accuracy
in the computation of the response in time. The procedure calls for the evaluation of
the non-linear dynamic response at a number of load levels.

A second study presented in the following sections is based on the response in the
phase space. In the phase space the transient displacements are plotted versus
velocities. If attention is restricted to just one degree of freedom of the system and
its corresponding velocity, then the evolution in time leads to cycles in this space.
Instability occurs if for one of the generalized co-ordinates of the system both the
velocity and the acceleration become zero.

A third study is presented to estimate dynamic instability under step loading (as
in the present modelling of pressures) using the static non-linear equilibrium path
and the total potential energy <. The procedure was originally developed by Ho!
and Bruce [20] and extended by several researchers [21}23, 6]. In the present case,
the non-linear equilibrium path has been computed using continuation techniques
with increments in displacements, under the same pressure de"ned in Appendix
A but applied as a static action. The equilibrium path satis"es the condition

L<
LQ

i

"0. (5)
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On the unstable part of the path, instability under step load occurs whenever the
energy, <, becomes zero:

<"0. (6)

In this paper, the energy has been computed along with the continuation analysis,
until the condition (6) is satis"ed.

A fourth study carried out is a static bifurcation analysis of the shell under wind
load action. The fundamental equilibrium path (emerging from the unloaded state)
is assumed to be linear, and a bifurcation load is computed using ALREF.

The complete set of four studies gives a more comprehensive understanding of
the instability phenomenon of silos under simulations of wind action than what
would be obtained from any individual study. Also the comparison between
dynamic and static analysis allows to understand the importance of inertia e!ects in
this problem.

3. CASE STUDY

We start the analysis of results for a silo structure with dimensions shown in
Figure 2. This is a cylindrical silo, almost 16 m in diameter, with variable thickness.
This silo geometry was previously studied by Ruiz [24] regarding a structural
collapse. Typical de#ections at the onset of buckling are shown in Figure 3, in the
circumferential direction and in elevation. As the cylinder buckles (computed from
the static analysis) only the cylindrical part has de#ections and the conical part
remains una!ected, thus providing sti!ening to the structure. De#ections are not
signi"cant in the lower part of the cylinder, where the thickness is largest. The
de#ections in the circumferential direction are localized within 303 from the
meridian of incidence of the maximum wind pressure.

The transient response of the shell at the location of maximum de#ection is
shown in Figure 4(a). For a load parameter K"1360)3 the vibrations of the shell
are stable. However, a small variation in the amplitude of the step load from 1360)3
to 1367)2 produces a large change in the response, so that the displacements have
large changes which are not proportional to the small change in the load. Dynamic
buckling under the current simulation of wind load is thus obtained by re"ning the
change in the load, and is found to occur at K

D
"1367. The time required to have

instability is less than 1 s, so that a step model in time leads to the same value of
dynamic buckling load is a rectangular impulse with the same pressure distribution
and duration of 3 s.

The evolution of the system can also be followed in the phase space, as indicated
in Figure 4(b). Here the system has a number of cycles before instability occurs. The
critical load is reached when the velocity and the acceleration of
a one-degree-of-freedom system are both zero. This criterion was extended to
multiple-degree-of-freedom systems by Raftoyiannis and Kounadis [25], so that
instability is identi"ed in one generalized co-ordinate when both the velocity and
the acceleration are zero. Such criterion has not been employed in this work



Figure 2. Silo made of a plain wall and di!erent thicknesses.
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because of its computational cost: to identify the zero values of velocity and
acceleration one has to re"ne the load at which instability occurs, mainly because
the acceleration is very sensitive to small changes in the load. Identi"cation of
instability in the time domain, on the other hand, is a rather simple matter, even if
the load is in the vicinity of the exact value for dynamic instability.

Having considered the forced vibrations of the shell, attention is now given to the
static non-linear response of the structure. Consider the point of maximum
de#ection in Figure 3; then, the static load-de#ection equilibrium path is shown in
Figure 5. The initial part of the path is clearly linear, and the maximum load
attained is reached at K

C
"1381, with displacements of 20 mm. The postcritical

part of the path is descending, and a recovery of sti!ness is found for large
de#ections. A linear bifurcation model has also been employed, leading to
a bifurcation load K-*/%!3

C
"1285, with maximum displacements of 10 mm.



Figure 3. Buckling mode of the plain-wall silo: (a) circumferential mode at z"17)48 m, (b)
buckling pro"le at h"0; *, original geometry; ---, deformed geometry.
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The components of the energy evaluated along the non-linear equilibrium path
may provide important information about the behavior of the system. The energy
contributions of the static system are also plotted in Figure 5 as a function of
displacements. Notice that the total potential energy of the system is never zero
although it comes close to this value for a displacement of 120 mm. The
consequence is that the energy criterion cannot be employed in this case to estimate
the dynamic buckling load under step loading.



Figure 4. Transient analysis of the plain-wall silo: (a) displacement at the location of maximum
amplitude for di!erent step load levels; (b) movement in the phase space for K"1367)2
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In the present study, the transient response of the shell leads to instability for
a load which is 98% of the value in the non-linear static analysis. Thus, it seems that
inertia e!ects are not very signi"cant in a!ecting the response of the shell. The static
prediction in this case is a good estimate of dynamic instability.

A second observation is that bifurcation buckling is a reasonable approximation
of the non-linear geometric behavior for the present case, with an error in the static
critical load of 7%.

4. INFLUENCE OF GEOMETRIC IMPERFECTIONS

The instability of thin-walled structures is known to be sensitive to small
imperfections in the geometry. In the present case, the same silo of Figure 2 has



Figure 5. Static analysis of the plain-wall silo. (¸) Load}displacement equilibrium path; (< )
potential of the external loads; (= ) internal strain energy.
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been investigated with a number of geometric deviations, and one such study is
reported here. The speci"c shape deviation has the same geometry as the static
buckling mode calculated from the bifurcation analysis, and with maximum
amplitude of 5 mm (slightly larger than the minimum thickness).

Computation of the transient response is shown in Figure 6(a) for the imperfect
shell, and the results should be compared with those of Figure 4(a) for the perfect
shell. In the imperfect shell, dynamic buckling occurs for a load parameter of
K"985, that is a decrease of 28% with respect to values in the perfect shell
(K"1367). The time at which instability starts is also less in the imperfect shell by
almost 50% (a more accurate value of the time at buckling requires a re"nement of
the load step employed to increase the load between di!erent transient
computations; however, the exact value is smaller than the approximate one). Next,
static values were computed for the imperfect shell, leading to a maximum load
K"1060. This means that instability detected using the dynamic criterion yields
values of 93% of the static limit load.

It seems clear that imperfections a!ect the response of the shell regarding the
computation of dynamic buckling loads, and should thus be taken into account.
For an imperfection with a maximum amplitude of the order of the thickness, the
reduction in dynamic buckling load was of 28%. As in the perfect case, the dynamic
buckling process can be approximated by means of an imperfect static non-linear
analysis, with errors in maximum load of about 7%.

5. INFLUENCE OF THE GEOMETRY OF THE SILO

The silo of Figure 2 is representative of a range of silo constructions, but shorter
silos with larger diameters are also employed as an alternative. Consider



Figure 6. Analysis of the imperfect silo with plain wall: (a) transient analysis at the leading edge for
di!erent load levels; (b) static analysis.
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a geometry with R"12)1 m, H"8)64 m and t"6)35 mm, with a constant
thickness in elevation.

The transient response of the shell is shown in Figure 7 and indicates that
buckling under an impulsive load occurs before the "rst 3 s of response. The actual
value of the load at instability is estimated as K"1537, a higher value than in the
"rst silo of Figure 2. The number of cycles before buckling in this case is increased,
as shown in Figure 7(a). The static response of the shell is shown in Figure 7(b), and
for this case the maximum load is K"1585, which is reached with small
displacements (about 15 mm).

For this large diameter shell, the static criterion based on energy considerations
is applicable. The energy becomes zero in correspondence with a load K"1275.



Figure 7. Short silo without the roof. (a) transient analysis at the leading edge for di!erent load
levels; (b) static analysis. (¸) load}displacement equilibrium path; (< ) potential of the external loads;
(=) internal strain energy.
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This latter value is the static estimate using the energy criterion, and is seen to
represent a conservative value with respect to the dynamic load at buckling.

The same shell has been studied including the in#uence of imperfections,
and results for imperfection amplitude of 5 mm are shown in Figure 8(a), (b).
The transient response indicates instability at K"1237, at a time of about
0)6 s. Comparison with results of the perfect shell show a decrease of 20%
due to imperfections, and a signi"cant reduction in the time required for
buckling.

The static response of the imperfect shell yields K"1327, which is in close
agreement with the results from the dynamic analysis.



Figure 8. Imperfect short silo without the roof: (a) transient analysis at the leading edge for
di!erent load levels: (b) static analysis. (¸) Load}displacement equilibrium path; (< ) potential of the
external loads; (= ) internal strain energy.
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Again, it is possible to employ the energy criterion for step load buckling, but the
results are too conservative.

6. SILO WITHOUT THE ROOF

The behavior of a silo without the roof is illustrated in this section for the same
silo geometry of Section 3. Loss of the conical part of the silo during the early stages
of wind action may occur due to inadequate joints between the cylindrical part and
the cone, and the consequences of the forced vibrations of the remaining silo are
investigated here.



Figure 9. Static buckling mode of the plain-wall silo without the roof: (a) circumferential mode at
the free edge (b) buckling pro"le at h"0; *, original geometry; ----, deformed geometry.
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The static deformations are shown in Figure 9. The zone a!ected at the onset of
static buckling is larger than in the complete silo, and the di!erence between
non-linear static instability (K

C
"600)8) and bifurcation from a linear fundamental

path (K-*/%!3
C

"731)2) is larger than in Section 3.
The forced vibrations of the system are shown in Figure 10(a). Unstable behavior

starts at approximately 1)5 s, and occurs at a load K"584 and displacements of the
order of 40 mm. This load is much lower than the dynamic buckling load for the
complete silo. The sti!ening in#uence of the roof is lost in this case, so that the shell
becomes unstable at about 50% of the dynamic buckling load of the complete silo.
It is thus very important to design the joint in such a way that the integrity of the
silo is preserved at all times and that the joint fails for loads higher than instability
of the silo.
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Figure 11. Static analysis of the plain wall silo without the roof. (¸) Load}displacement
equilibrium path; (< ) potential of the external loads; (=) internal strain energy.
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The cycles in the phase space are shown in Figure 10(b). Again, for this multiple-
degree-of-freedom system it is not possible to observe the condition of both velocity
and acceleration equal to zero at the onset of instability unless the load step is re"ned.

The energy components are not constant during the transient response, except
for the Hamiltonian, which is zero at all times. The non-linear oscillations of the
system produce exchanges of energy from potential to kinetic energy. The levels of
kinetic energy K in Figure 10(c) are smaller than those due to elastic deformations
and the load potential.

The static non-linear response of the shell has been computed and results are
shown in Figure 11. The system has important non-linear e!ects prior to reaching
a critical state at K

C
"600)8 and displacements of 30mm.

The energy contributions of the static system are also shown in Figure 11, and
they are such that for a displacement of about 80 mm, the total potential energy
becomes zero. Thus, it is possible in this case to apply the approximate energy
criterion for a step load. In the present case the load on the descending part of the
non-linear equilibrium path for which <"0 is K

D
"424, a much lower value than

the instability load using the transient response. The energy criterion of step
loading is too conservative in this case.

7. SILO WITH CORRUGATED WALLS

A very common silo construction is made using corrugated curved plates, so that
it is important to evaluate how such wall shape in#uences the forced vibrations of
b
Figure 10. Transient analysis of the silo without the roof : (a) displacement of the top point a the

leading edge for di!erent load levels; (b) movement in the phase space for K"584)2; (c) evolution of
energy components for K"584)2, international strain energy, = ; kinetic energy, K ; potential of
external loads, < ; Hamiltonian H.



Figure 12. Silo made of corrugated panels: (a) global geometry and (b) details of the wall
(zc"10)16 cm, f"0)556 cm, t"0)35 cm)
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the silo. The geometry and wall properties have been taken from a European "rm
operating in Argentina, and are shown in Figure 12. The waves on the walls
are very short compared with the buckling mode, shown in Figure 13. Again,
the complete silo has de#ections restricted to the cylindrical part at static buck-
ling. In this case, the thickness is constant and the de#ections in elevation a!ect
a much larger zone than in Figure 3(a). The transverse de#ections a!ect a wider
zone in the circumferential direction and this is a consequence of the higher sti!ness
of the wall.

The transient response of the silo is shown in Figure 14(a). Stable behavior is
found for K"1625; however, unstable response is observed for K"1641. The



Figure 13. Static buckling modes: (a) circumferential mode at z"15)5 m, (b) buckling pro"le at
h"0; *, original geometry; ---, deformed geometry.
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phase-space evolution of the system is shown in Figure 14 (b) for the point of
maximum static de#ection.

The non-linear static response is plotted in Figure 15. The in#uence of
non-linearity on the fundamental equilibrium path is important in this case, and
leads to a critical load K"1675 with displacement amplitude of 90 mm. The static
bifurcation load is much higher, reaching K-*/%!3

C
"3487. The static energy

components are also plotted in Figure 15, and do not become zero for any
displacement con"guration. Thus, the approximate energy criterion cannot be
applied in this silo con"guration.



Figure 14. Transient analysis of the silo with a corrugated wall: (a) displacement of point at
z"15)5 cm on the leading edge, (b) movement of the point in phase space.

Figure 15. Static analysis of the silo with a corrugated wall. (¸) Load}displacement equilibrium
path; (< ) potential of the external loads; (= ) internal strain energy.
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Figure 16. Imperfect silo with a corrugated wall: (a) transient analysis at the leading edge for
di!erent load levels; (b) static analysis. (¸) Load}displacement equilibrium path; (< ) potential of the
external loads; (= ) internal strain energy.
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8. INFLUENCE OF GEOMETRIC IMPERFECTIONS IN CORRUGATED SILOS

How imperfections a!ect the dynamic response of corrugated wall silos has been
investigated for one case. The transient response of the shell with amplitude of
imperfection of 5 mm is shown in Figure 16(a). Instability in this case is detected for
K"1456, a reduction of 11% with respect to the value obtained for the perfect
shell.

The non-linear static response is plotted in Figure 16(b) and displays a maxi-
mum in the load at K"1549. The dynamic buckling load in this case is 94% of the
static value.
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9. INFLUENCE OF THE ROOF IN CORRUGATED SILOS

A silo with similar wall characteristics as in Figure 12 with R"9)1 m,
H"5)59 m and without the roof has been investigated. The dynamic criterion of
stability of Budianski}Roth has been used in Figure 17(a) to evaluate instability
and results in dynamic buckling at K"2990, and for a time exceeding 3 s.

Small di!erences in the vibrations of the shell are obtained in this case between
an impulsive load with 3 s duration and a step load, but the dynamic buckling load
is the same.

Computation of the equilibrium path using the static model is shown in Figure
17(b), with a maximum load at K"3115 and displacements of the order of 70 mm.
Figure 17. Short corrugated wall silo without the roof : (a) transient analysis at the leading edge for
di!erent load levels; (b) static analysis. (¸) Load}displacement equilibrium path; (< ) potential of the
external loads; (= ) internal strain energy.



Figure 18. Imperfect short corrugated wall silo without the roof : (a) transient analysis at the
leading edge for di!erent load levels; (b) static analysis. (¸) Load}displacement equilibrium path; (< )
potential of the external loads; (= ) internal strain energy.
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The energy criterion is applicable in this problem, but leads to a low estimate
(K"2430).

Finally the same case has been studied with imperfections of 5 mm amplitude in
the form of the static buckling mode. The dynamic response in Figure 18(a)
becomes unstable at K"2655 and approximately 1 s. The static response in Figure
18(b) has a maximum at K"2825, while the energy estimate leads to K"2313.

10. CONCLUSIONS

Under the simulation of wind pressure and step or impulsive load, the present
studies show that the forced vibrations of the system lead to an unstable response.
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This occurs for both complete silos and for silos without the roof, but in the latter
case the load required is much less than that for the complete silo. Loss of the roof
may imply a 50% reduction in the carrying capacity of the silo, so that it is crucial
to maintain collaboration from the roof at all times before dynamic instability of
the full silo occurs.

Identi"cation of the onset of instability is more di$cult in the phase-space
diagram and has not been used as stability criterion in this work. Computation of
the phase space for the case studied in this paper is done only as an illustration of
the cycles that occur before instability. A more re"ned load step (involving many
computations) is required to identify dynamic buckling from the phase-space
diagram.

The non-linear static studies provide a good estimate to the instability following
forced vibrations of the system. The di!erences obtained for typical silo geometry
are less than 5%. This indicates that inertia e!ects are not very signi"cant for this
class of problems.

The energy criterion of step load buckling is not applicable for the case of
complete silos studied. The only problem in which this simpli"ed estimate was
possible to be computed was in the silo without the roof, in which case the estimates
were too conservative.

Finally, linear bifurcation buckling is a reasonable approximation to the silo of
Section 3, but was overconservative for silos constructed with corrugated walls.

The results of this appear seem to reinforce the idea tht wind load buckling of
silos needs to be investigated using the forced vibration response of the shell,
and that acceptable estimates can be obtained by means of a static non-linear
analysis under the same pressure distribution. The static analysis is also of great
value in the identi"cation of the load range for which the forced vibrations are to be
studied.
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APPENDIX A: DATA FOR COMPUTATIONS

The Fourier coe$cients of the circumferential variation of wind pressure have
been investigated by several authors for di!erent shell forms and dimensions. Table
1 contains values from the joint ACI-ASCE committee on cooling towers [26], and
from an earlier classical work by Rish [27]. But for silos with dimensions similar to
those studied in this paper it is not easy to "nd experimental information on wind
pressures. The two sets of coe$cients in Table 1 were employed in the computa-
tions and the results showed that the small di!erences in pressures did not produce
any signi"cant e!ects on the dynamic buckling results. Di!erent distributions in
height were also employed (constant and linear variations in elevation). However,
the computations indicate that the actual pressure distribution is not so critical for
the thin shells considered in this paper. Similar conclusions were obtained for short
tanks in reference [8]. Because of the above, the results reported in this paper have
been computed using the wind distribution from reference [26] and constant
pressure values in elevation.
TABLE 1
Fourier coe.cients of wind pressure variation

Ref. [26] Ref. [27]

c
0

0)2765 0)387
c
1

!0)3419 !0)338
c
2

!0)5418 !0)533
c
3

!0)3872 !0)471
c
4

!0)0525 !0)166
c
5

0)0771 0)066
c
6

0)0039 0)055
c
7

!0)0341
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